Find the right capacitors for your audio projects with our guide on types, sizing, and selection. From electrolytic to ceramic, learn how to choose the best capacitors for audio applications. Capacitors are an essential component in audio equipment, serving as a vital link between the amplifier and the speaker.
It is also important to note that the Q of a capacitor can be managed by carefully choosing the materials and construction of the capacitor. This is because multilayer ceramic capacitors (MLCCs) are made up of alternating layers of ceramic dielectric material and metal electrodes and compressed to form a compact, high-capacitance device.
Q factor, or quality factor, is an electrical term used to describe the ratio of energy stored to energy dissipated in a capacitor at a certain frequency (you can learn more about the different components of Q factor and ways to define it here). In other words, Q factor tells us how good a capacitor is at its job at a certain frequency.
A High Q capacitor can offer the following characteristics: Low Energy Loss – In many applications, minimizing energy loss is crucial to maintain system performance and efficiency. High Q capacitors exhibit lower energy losses in the form of heat or electromagnetic radiation, which is beneficial in high-frequency or high-power applications.
Good high-Q capacitors can have a Q factor value of over 10,000 at 1MHz and over 1,000 at 100MHz, while standard capacitors can have a Q factor as low as 50 at 1kHz. The difference between a high-Q capacitor and a standard capacitor is in the actual design of the capacitor, as as well as the materials used.
MOD Electronics make the impregnated polyester capacitors and the electrolytic axial capacitor ranges for the guitar market. Highly regarded signal capacitors for guitar amps and guitars, these hand made caps gems have incredibly tone, providing a lush and creamy top end…
The standard frequency used in Q factor measurements is 1MHz. However, since the Q factor varies greatly with frequency, the Q factor given at 1MHz is not a good approximation of the Q factor at, for example, 2GHz. Some datasheets will give Q factor values at higher frequencies if the capacitor was intended for use at high frequencies.