The production of the lithium-ion battery cell consists of three main process steps: electrode manufacturing, cell assembly and cell finishing. Electrode production and cell finishing are largely independent of the cell type, while within cell assembly a distinction must be made between pouch cells, cylindrical cells and prismatic cells.
Discussion: The proposed liquid cooling structure design can effectively manage and disperse the heat generated by the battery. This method provides a new idea for the optimization of the energy efficiency of the hybrid power system. This paper provides a new way for the efficient thermal management of the automotive power battery.
For liquid cooling of cylindrical cells, all methods proposed or in use today require a certain gap between all the individual cells in the diameter direction to allow a coolant flow path to pass through, which undoubtedly increases the size of the battery pack and reduces its volumetric energy density.
Additionally, the simulation and test results demonstrate that the liquid cooling solution can restrict the battery pack’s maximum temperature rise under the static conditions of a continuous, high-current discharge at a rate of 3C to 20 °C and under the dynamic conditions of the New European Driving Cycle (NEDC) to 2 °C.
Currently, liquid cooling is the most widely used solution for managing battery temperatures due to its technical effectiveness, ability to dissipate heat, and cost-effectiveness. Transverse flow and series connection are mostly employed for the heat dissipation of cylindrical battery packs that are either liquid-cooled or air-cooled.
Four cooling strategies are compared: natural cooling, forced convection, mineral oil, and SF33. The mechanism of boiling heat transfer during battery discharge is discussed. The thermal management of lithium-ion batteries (LIBs) has become a critical topic in the energy storage and automotive industries.
In the first type (Case 1), the bottom side of battery pack is contact with a baffled cold plate, where baffles are inserted in the flow channel to distribute an even volume rate across four battery modules. After optimization, the spacing between baffles are set to 22 mm and the height of channel is 7 mm.